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Abstract

One-dimensional (1D) electron-hole (e-h) systems in a high-density regime is investigated by means of bozonization
techniques. It turned out that the systems are insulating even at the high density limit and that the exciton Mott
transition (insulator-to-metal transition) never occurs at absolute zero temperature. The insulating ground state
exhibits a strong instability towards the crystallization of biexcitons.
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1. Introduction

For more than three decades, electron-hole (e-h)
systems realized in strongly photo-excited semi-
conductors have been intensively studied both
theoretically and experimentally. One of keywords
to understand these systems is the exciton Mott
transition (insulator-to-metal transition), which
has been believed to take place with increasing of
photo-excitation (e-h density). The main origin
of this transition is enhancement of the screening
effects which weaken the binding energy of the e-h
bound states [1]. Such exciton Mott transition is
confirmed both theoretically and experimentally
only in three-dimensional (3D) systems.
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Quite recently, extremely clean one-dimensional
(1D) e-h systems are realized experimentally in
quantum wires fabricated in the T-shaped quan-
tum wells [2]. From the theoretical point of view,
such 1D systems are highly special since at 1D an
electron and a hole form an exciton bound state
even when the attractive e-h interaction is infinites-
imally weak. Therefore, we naively expect that the
exciton Mott transition is absent in 1D. This argu-
ment above, however, is insufficient since the dy-
namical screening effects are not considered.

Some theoretical proposals on the topic of the
exciton Mott transition in 1D has been reported in
Ref.[3], where a Bethe-Salpeter equation is solved
approximately. They found a critical e-h density,
nc, where the exciton bound state is dissociated,
at absolute zero temperature even in 1D. Never-
theless, the calculated optical absorption spectra
show no evidence of the exciton Mott transition,
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i.e., the exciton peak survives even for densities
higher than nc. They claimed that this nonvan-
ishing exciton peak explains some experiments [4].
Their results are, however, unreliable because their
perturbation theory based on the Fermi liquid pic-
ture, which is not applicable to the 1D systems.

With increasing the e-h density, the system goes
to the weak-coupling regime, where the charac-
teristic interaction energy is much smaller than
the Fermi energies of electrons and holes. In this
regime, the bosonization method has advantages
in that it can take full account of the interaction
processes. The first application of this method to
the 1D e-h systems is given in Ref.[5], in which elec-
trons and holes are assumed to interact with each
other through short-range force. In the following,
we apply this technique to the 1D e-h system with
long-range Coulomb interaction.

Now, we turn to the properties of the insulat-
ing phase. In 1D systems, the possibility of exciton
crystallization is theoretically pointed out [6] in the
spinless e-h systems at intermediate e-h densities,
which is not expected to take place in 3D systems.
Here, “crystallization” means that the excitons are
located at regular intervals. In the following, we
will discuss the possibility of the biexciton crystal-
lization in 1D systems consisting of electrons and
holes with spin at absolute zero temperature.

2. Formulation

In the following, we consider properties of the
“ground state” of a one-dimensional e-h system.
Such consideration makes sense in comparisonwith
the actual experimental situation because the in-
terband relaxation time is usually long enough to
realize intraband thermal quasiequilibrium.

In the weak-coupling regime, the low-energy
physics is unaffected by the linearization of band

dispersion, ǫ(µ)(k)=rv
(µ)
F (k − rkF), near the right

(r = +) and the left (−) Fermi points k = rkF,

respectively, where v
(µ)
F denotes the Fermi veloc-

ity and µ = e, h is the index for the electron and
the hole, respectively. When both electron and
hole bands are far off the half filling, the umklapp
processes are negligible. Then, the Hamiltonian

can be written in the g-ology form, which is char-
acterized by the momentum-dependent coupling

parameters g
(µµ′)
1 (q), g

(µµ′)
2 (q) and g

(µµ′)
4 (q). Here,

g
(µµ′)
1 specifies the backward scattering, while

g
(µµ′)
2 and g

(µµ′)
4 do the forward ones. Note that

there is interband (e-h) scattering process (µ 6= µ′)
as well as the intraband (e-e and h-h) scattering
process (µ = µ′). For simplicity, we restrict our-

selves to the e-h symmetric case, vF = v
(e)
F = v

(h)
F

and g
(ee)
n = g

(hh)
n . The conclusions obtained below

are quite general and qualitatively unchanged for
the asymmetric cases. More detailed and general
calculations will be presented elsewhere [7].

In the quantum wire formed in T-shaped quan-
tum wells, the interaction potential behaves as
unscreened Coulomb potential (∝ 1/r) at the
long interparticle distance r. Thus, the coupling
parameters of the forward scattering show a log-
arithmic divergence at q → 0 [8] In fact, they

can be approximated in the form of g
(ee)
2,4 (q) =

g
(hh)
2,4 (q) ∼ g2,4 + 2g0K0(|q|d) and g

(eh)
2,4 (q) =

g
(he)
2,4 (q)∼−g′2,4 − 2g0K0(|q|d), using the modified

Bessel function K0(x), and the effective diameter
of the quantum wire d. The coupling constants g2,4

and g′2,4 specify the short-range part of forward
scattering, and g0 = e2/ǫπvF does its long-range
part, where e and ǫ denote the electron charge
and the dielectric constant, respectively. On the
other hand, the coupling parameters of the back-
ward scattering can be substituted to constants

as g
(ee)
1 (q)= g

(hh)
1 (q)= g1 and g

(eh)
1 (q)= g

(he)
1 (q)=

−g′1, because they show no singularity at q∼±2kF.

Now, we introduce the phase operators Φ
(ξ)
ν (x)

and Θ
(ξ)
ν (x) (ξ=±, ν=ρ, σ) through

∂xΦ(±)
ρ =−π

∑

rσ

ρ(±)
rσ , ∂xΦ(±)

σ =−π
∑

rσ

(−1)δσ↓ρ(±)
rσ ,

∂xΘ(±)
ρ =π

∑

rσ

rρ(±)
rσ , ∂xΘ(±)

σ =π
∑

rσ

r(−1)δσ↓ρ(±)
rσ ,

where σ =↑, ↓ denotes the spin, δσσ′ is the Kro-

necker’s delta, ρ
(±)
rσ = (ρ

(e)
rσ ± ρ

(h)
rσ )/2, and ρ

(µ)
rσ (x)

denotes the density at position x for the particle

with indices r and σ. It is noteworthy that Φ
(+)
ρ

and Φ
(−)
ρ are associated with the mass and charge

densities (the sum and difference of electron and
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hole densities), respectively.
Then, the g-ology Hamiltonian is written as

H =
∑

ν=ρ,σ,ξ=±

H(ξ)
ν + H

(intra)
bs + H

(inter)
bs ,

H(ξ)
ν =

v
(ξ)
ν

2π

∫

dx

{

K(ξ)
ν

[

∂xΘ(ξ)
ν

]2

+
1

K
(ξ)
ν

[

∂xΦ(ξ)
ν

]2
}

+
vF
π

∫

dxdx′
2g0δξ−δνρ

√

(x− x′)2 + d2
∂xΦ(−)

ρ ∂x′Φ(−)
ρ ,

H
(intra)
bs =

vFg1
πα2

∫

dx cos 2Φ(+)
σ cos 2Φ(−)

σ ,

H
(inter)
bs =−

vFg
′
1

πα2

∫

dx
∑

ξ

cos 2Φ(−)
ρ cos 2Φ(ξ)

σ (1)

Here, we used the cut-off constant α, the renor-

malized velocity v
(ξ)
ν =vF(a

(ξ)
ν b

(ξ)
ν )1/2 and coupling

constant K
(ξ)
ν = (a

(ξ)
ν /b

(ξ)
ν )1/2, where a

(ξ)
ν and b

(ξ)
ν

are given as a
(±)
ρ = 1 + g4 − g2 + g1/2 ∓ g′4 ± g′2,

b
(±)
ρ =1 + g4 + g2 + g1/2∓ g′4∓ g′2, a

(±)
σ =1 + g1/2,

and b
(±)
σ = 1 − g1/2.

The field operators for the electron and

the hole can also be expressed as ψ
(µ)
rσ (x) =

(2πα)−1/2η
(µ)
rσ exp[ir(kFx + φ

(µ)
rσ )] in terms of

the Klein factor η
(µ)
rσ and the phase operators,

φ
(e)
rσ =

∑

ξ=±(−Φ
(ξ)
ρ −σΦ

(ξ)
σ +rΘ

(ξ)
ρ +rσΘ

(ξ)
σ )/2 and

φ
(h)
rσ =

∑

ξ=± ξ(−Φ
(ξ)
ρ −σΦ

(ξ)
σ +rΘ

(ξ)
ρ +rσΘ

(ξ)
σ )/2.

3. Results

If we neglect the intra- and interband backward

scattering terms, H
(intra)
bs and H

(inter)
bs , the Hamil-

tonian is decoupled into four parts, each reduced to
the Tomonaga-Luttinger (TL) form. In this case,
they can be exactly diagonalized and the system is
shown to have four gapless excitation modes cor-
responding to four different degrees of freedom:
(ν, ξ)=(ρ,+), (ρ,−), (σ,+), and (σ,−).

We can also evaluate the asymptotic behav-
ior of the various correlation functions with
the form, C(x) = 〈O†(x)O(0)〉. After some
calculations similar to those of Ref.[8], we
find that the correlation function of OBED =
ψ

(e)†
+↑ ψ

(e)†
+↓ ψ

(h)†
−↓ ψ

(h)†
−↑ ψ

(h)
+↑ψ

(h)
+↓ψ

(e)
−↓ψ

(e)
−↑ + h.c. ∼

cos 4Φ
(−)
ρ show the slowest decay. It is interesting

to note that OBED appears in the slowly vary-
ing (0kF) component of the biexciton density
(BED) operator. The biexciton creation operator

here is given as ψ
(e)†
↑ ψ

(e)†
↓ ψ

(h)†
↓ ψ

(h)†
↑ with ψ

(µ)†
σ =

∑

r ψ
(µ)†
rσ . This fact shows the strong tendency

toward the biexciton formation. In this sense,
the ground state has the character of “biexciton
liquid.”

Now, we turn to effects of the backward scatter-
ing terms. It is noteworthy that intraband back-
ward scattering is (marginally) irrelevant if the in-
terband one is absent. Thus, we can neglect it to in-
vestigate the relevancy of the interband backward
scattering. We treat the interband backward scat-
tering term in the self-consistent harmonic approx-
imation (SCHA) and the renormalization group
(RG) method. The both results show that the in-
terband backward scattering is always relevant in-
dependent of g0>0. Because the coupling constant

g′1 is renormalized to a large value, Φ
(−)
ρ and Φ

(±)
σ

are fixed by the condition: cos 2Φ
(−)
ρ =cos 2Φ

(+)
σ =

cos 2Φ
(−)
σ = ±1, which minimizes the interband

backward scattering term.
This localization of the phases leads to the en-

ergy gaps in the excitation modes corresponding
to (ν, ξ) = (ρ,−), (σ,+), and (σ,−). The point is
that the charge excitation, (ν, ξ)=(ρ,−), is gapful.
This results in that the system is an insulator even
in the high e-h density limit, and suggests that the
exciton Mott transition is absent at absolute zero
temperature.

There remains a single gapless excitation corre-

sponding to (ν, ξ)=(ρ,+), since H
(+)
ρ is decoupled

from the other part of the Hamiltonian. As will be

mentioned below, its coupling constantK
(+)
ρ spec-

ify the power of the algeblaic decay of some corre-
lation functions.

Now, let us discuss the character of the insulat-
ing ground state obtained above. To this end, we
investigate the asymptotic behavior of the correla-
tion functions C(x)= 〈O†(x)O(0)〉. There are two
important points.

1. Because the phases Φ
(−)
ρ and Φ

(±)
σ are local-

ized, the fluctuations of their conjugate opera-

tors Θ
(−)
ρ and Θ

(±)
σ diverge. Thus, C(x) decays
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exponentially if O(x) contains Θ
(−)
ρ or Θ

(±)
σ .

2. If O(x) vanishes under the phase-fixing condi-
tion, C(x) shows an exponential decay.

Owing to these criteria, it is sufficient to con-
sider the following two operators, OMDW =
∑

µrσ ψ
(µ)†
rσ ψ

(µ)
−rσ ∼ cos(2kFx−Φ

(+)
ρ ) and OBEI =

ψ
(e)
r↑ ψ

(e)
r↓ ψ

(h)
−r↓ψ

(h)
−r↑ ∼ exp(2iΘ

(+)
ρ ), where these

expressions are derived using the condition

cos 2Φ
(−)
ρ =cos 2Φ

(+)
σ =cos 2Φ

(−)
σ =1.

The operator OMDW(x) denotes the 2kF oscil-
latory component of mass density wave (MDW),
while OBEI(x) annihilates a “biexciton” located at
x. The asymptotic forms of their correlation func-
tions can be explicitly evaluated as CMDW(x) ∼

x−K(+)
ρ

/2 and CBEI(x) ∼ x−2/K(+)
ρ . As a result,

we can see that the formation of the 2kF-MDW
and the Bose-Einstein condensation of biexcitons
(biexcitonic insulator, BEI), shows the strongest

instability at K
(+)
ρ <2 and K

(+)
ρ >2, respectively.

In the weak coupling regime (gn ≪ 1 and g′n ≪

1), we obtain K
(+)
ρ ∼ 1, which leads to the strong

instability toward the formation of the 2kF-MDW.
The formation of 2kF-MDW can be interpreted as
“biexciton crystallization.” In fact, the 2kF charge
density waves (CDWs) of the electron and the hole
are simultaneously formed in an in-phase way in
the 2kF-MDW state since the fluctuation of the
total charge density is strongly suppressed. As a
result, two electrons and two holes are effectively
accumulated to form “biexcitons” arranged regu-
larly with the periodicity π/kF.

4. Summary and Discussion

By means of the SCHA and RG techniques, we
examined the relevancy of the interband backward
scattering, and showed that it is always relevant
and the charge gap ∆ opens. This means that the
system is an insulator even in the high e-h den-
sity regime in 1D, and indicates the absence of the
exciton Mott transition. We also investigated the
character of this insulator and found the strong in-
stability toward the biexciton crystallization.

Our results clearly show the importance of biex-
citon correlation, whereas the previous theories

take into account only the exciton correlations.
It was also shown that only the collective modes
are significant, that is the special feature of the
1D system. This fact also indicates that the tra-
ditional criterion for the exciton Mott transition
is not applicable to the 1D e-h system, in which
the formation of the bound state between a sin-
gle electron and a single hole is considered using
screened interaction [3].

In experiments, we can expect that the temper-
ature kBT is larger than the energy gap ∆. In this
case, the effects of the backward scattering terms
are negligible. Then, the system shows the char-
acter of “biexciton liquid,” within the length scale
∼ vF/kBT . This result is quite contrast to that
for the e-h TL model with short-range interaction
[5], in which the 2kF-CDW of the hole is the most
dominant order. The “biexciton-liquid” character
is consistent with the recent observation of the pho-
toluminescence spectra [2]; they show a broad peak
at high e-h density, which continuously connects
with the biexciton peak at low e-h density.
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